Estimating transmitter release rates from postsynaptic current fluctuations.
نویسندگان
چکیده
A method is presented that allows one to estimate transmitter release rates from fluctuations of postsynaptic current records under conditions of stationary or slowly varying release. For experimental applications, we used the calyx of Held, a glutamatergic synapse, in which "residual current," i.e., current attributable to residual glutamate in the synaptic cleft, is present. For a characterization of synaptic transmission, several postsynaptic parameters, such as the mean amplitude of the miniature postsynaptic current and an apparent single channel conductance, have to be known. These were obtained by evaluating variance and two more higher moments of the current fluctuations. In agreement with Fesce et al. (1986), we found both by simulations and by analyzing experimental records that high-pass filtering of postsynaptic currents renders the estimates remarkably tolerant against nonstationarities. We also found that release rates and postsynaptic parameters can be reliably obtained when release rates are low ( approximately 10 events/msec). Furthermore, during a long-lasting stimulus, the transmitter release at the calyx of Held was found to decay to a low, stationary rate of 10 events/msec after depletion of the "releasable pool" of synaptic vesicles. This stationary release rate is compatible with the expected rate of recruitment of new vesicles to the release-ready pool of vesicles. MiniatureEPSC (mEPSC) size is estimated to be similar to the value of spontaneously occurring mEPSC under this condition.
منابع مشابه
Postsynaptic hyperpolarization increases the strength of AMPA-mediated synaptic transmission at large synapses between mossy fibers and CA3 pyramidal cells.
In chemical synapses information flow is polarized. However, the postsynaptic cells can affect transmitter release via retrograde chemical signaling. Here we explored the hypothesis that, in large synapses, having large synaptic cleft resistance, transmitter release can be enhanced by electrical (ephaptic) signaling due to depolarization of the presynaptic release site induced by the excitatory...
متن کاملThe oscillatory responses of skate electroreceptors to small voltage stimuli
Tonic nerve activity in skate electroreceptors is thought to result from spontaneous activity of the lumenal membranes of the receptor cells which is modulated by applied stimuli. When physiological conditions are simulated in vitro, the receptor epithelium produces a current which flows inward across the lumenal surface. This epithelial current exhibits small spontaneous sinusoidal fluctuation...
متن کاملFast, Automated Implementation of Temporally Precise Blind Deconvolution of Multiphasic Excitatory Postsynaptic Currents
Records of excitatory postsynaptic currents (EPSCs) are often complex, with overlapping signals that display a large range of amplitudes. Statistical analysis of the kinetics and amplitudes of such complex EPSCs is nonetheless essential to the understanding of transmitter release. We therefore developed a maximum-likelihood blind deconvolution algorithm to detect exocytotic events in complex EP...
متن کاملPostsynaptic depolarisation enhances transmitter release and causes the appearance of responses at "silent" synapses in rat hippocampus.
Recent data indicate that most "silent" synapses in the hippocampus are "presynaptically silent" due to low transmitter release rather than "postsynaptically silent" due to "latent" receptors of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid type (AMPARs). That synapses bearing only N-methyl-d-aspartate (NMDAR) receptors do exist is suggested by the decreased number of transmission fa...
متن کاملMaintenance of High-Frequency Transmission at Purkinje to Cerebellar Nuclear Synapses by Spillover from Boutons with Multiple Release Sites
Cerebellar Purkinje neurons maintain high firing rates but their synaptic terminals depress only moderately, raising the question of how vesicle depletion is minimized. To identify mechanisms that limit synaptic depression, we evoked 100 Hz trains of GABAergic inhibitory postsynaptic currents (IPSCs) in cerebellar nuclear neurons by stimulating Purkinje axons in mouse brain slices. The paired-p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 24 شماره
صفحات -
تاریخ انتشار 2001